Segment Any 3D Gaussians

1AI Institute, SJTU 2Huawei Inc.

SAGA can perform fine-grained interactive 3D segmentation in 3D Gaussians within milliseconds. overview



This paper presents SAGA (Segment Any 3D GAussians), a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS). Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms. This is achieved by attaching an scale-gated affinity feature to each 3D Gaussian to endow it a new property towards multi-granularity segmentation. Specifically, a scale-aware contrastive training strategy is proposed for the scale-gated affinity feature learning. It 1) distills the segmentation capability of the Segment Anything Model (SAM) from 2D masks into the affinity features and 2) employs a soft scale gate mechanism to deal with multi-granularity ambiguity in 3D segmentation through adjusting the magnitude of each feature channel according to a specified 3D physical scale. Evaluations demonstrate that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods. As one of the first methods addressing promptable segmentation in 3D-GS, the simplicity and effectiveness of SAGA pave the way for future advancements in this field. Our code is available at this url.

More Visualization Results on the MIP-360-counter

More Visualization Results on the LLFF-horns


      title={Segment Any 3D Gaussians}, 
      author={Jiazhong Cen and Jiemin Fang and Chen Yang and Lingxi Xie and Xiaopeng Zhang and Wei Shen and Qi Tian},
      journal={arXiv preprint arXiv:2312.00860},